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Modified Kernel-based Nonlinear Feature 
Extraction 

J. Ma, S. Perkins, J. Theiler 
NIS-2, 

Los Alamos National Lab, 
Los Alamos, NM, USA 

S. h a l t  
Department of Electrical Engineering 

Ohio State University 
Columbus, OH, USA 

Abstract: 
Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the 
complexity of subsequent processes. A group of Kernel-based nonlinear FE ( H E )  algorithms has attracted much 
attention due to their high per$ormance. However, a serious limitation that is inherent in these algorithms -- the 
maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades 
their flexibility. Here we propose a modified version of those KFE algorithms (MKFE), This algorithm is developed 
@om a special form of scatter-maw, whose rank is not determined by the number of classes involved, and thus 
breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is 

.especially useful when the training set is small. 
Keywords: kernel-based feature extraction (KFE), hrnel trick, modified kernel-based feature extraction 
(MKFE), nonlinear feature extraction, support vector machines (SVMs). 

1. Introduction 

Feature Extraction (FE) plays a pivotal 
role in many applications such as pattern 
recognition and data mining. Among a large 
number of FE algorithms developed over the 
past three decades, a group of kernel-based 
nonlinear FE algorithms stand out recently 
due to their high performance [l-51. Two 
typical examples of this class of algorithms 
are the Kernel Fisher Discriminant (KFD) 
algorithm proposed by Mika, et. al. [l], and 
the Kernel-based nonlinear FE (KFE) 
algorithm proposed by Ma, et. a1 [4]. Both 
algorithms employed a technique referred to 
as the “kernel trick” to introduce nonlinearity 
into the well-established linear algorit-hm. 
KFD is a nonlinear extension of the Fisher’s 
criterion, and was mainly developed for two- 
classes problem, while KFE is a nonlinear 
extension of the scatter-matrix-based 
separability criterion, and is applicable to 
multiple-class problem. 

However, both algorithms can only 
extract at most L-I features, where L is 
number of classes involved. In this paper we 
propose a modified algorithm, which breaks 
the above limitation. Experimental results 
suggest that this Modified Kernel-based 
nonlinear Feature Extraction (MKFE) 
algorithm is especially useful when the 
training set is small. 

Because the MKFE algorithm is a direct 
development of the KFE algorithm, in order 
to facilitate the reader’s understanding, we 
will briefly describe the KFE algorithm in 
Section 2. The MKFE algorithm is derived 
and presented in Section 3. The performance 
of the MKFE algorithm is demonstrated by a 
real-world experiment in Section 4. 

2. Kernel-based Nonlinear Feature 
Extraction 

A linear FE problem can be defined as 
follows: Given a criterion J, find an n-by-m 
matrix E, which generates an optimal m- 
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feature sample, R, fkom the original n-feature 
sample,X That is, R = E T X  [7]. 

Thus, selecting a criterion J to 
quantitatively measure optimal class- 
separability is generally a prerequisite for 
developing FE algorithm. Although Bayes 
classification error, P,, is a natural criterion, 
its difficulty of estimation [6] makes its direct 
application impractical. Due to its simplicity, 
intuitive appeal, relatively good performance, 
and robustness, an alternative, scatter-matrix 
based linear criteria is widely adopted [7] ,  
This criterion can be represented as: 

where tr{A} denotes the trace operation of a 
matrix A .  S, is th ithin-matrix, and 
indicates the spread of samples, X:)  , around 
the individual class mean, M ,  . 

J1 = tr(Sl;‘S,), (1) 

drawbacks: (a) It will fail when the sample 
mean, Mi, of any class i, is the same as the 
sample mean of all samples, Mo; @) This FE 
algorithm can only exploit linear class 
separability. These drawbacks motivate us to 
extend this linear FE algorithm to the 

- a , , , K ( X i  x) ’ 

$ ai ,2K(Xi  x) 
i=l 

i=l 
R = F ( X )  = 

nonlinear domain. The technique we 
employed is named “kerne2 trick”[ lo]. The - i=l - 

2 ai ,mK(Xi ,  x )  

S,  is the between-matrix, and indicates the 
spread of mean of each class, M ,  , around the 
mean of all the classes, M ,  . 

(7) 

replace the dot product in a Euclidean space 
with a nonlinear kernel hction. That is: 

(4) 
where the kernel function, K(X,Y), maps a 
subspace in (R” x R”) to a subspace in R. This 
transformation can be interpreted as 
follows[8]: 
(1) Map a sample Xfiom a subspace of R”, or 

input space, I, to another Euclidean 
space, or feature space, H, using a 
functional vector, 

< P : I + H .  

< X , Y  >= X T Y  3 K ( X ; Y ) ,  

(2) The kernel function, K(XY), can be 
defined as a dot-product in space H. That 
is, 

K(X,Y) = (P(X)* Q(Y) ( 5 )  
Therefore, a kernel hc t ion  implicitly 
introduces both a Euclidean space H, and a 
map 0. 

The general formulation of a nonlinear 
FE problem can be defined as follows: 

[ F , ( X ) 1  
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A =  

*.. 
aN,I aN,I 

=[al a m ]  
aij are a set of coefficients; 

and 

L K ( x N , x > l  

where & (i=l ...N) are a set of representative 
samples, or the training set. 

Thus developing a nonlinear FE 
algorithm is equivalent to finding a matrix, A, 
which maximizes the class separability of the 
extracted samples, R. 

Substituting Equation (5) into (7) we 
obtain: 

R =  

= EFTcD(X) 
The nonlinear FE defined in Equation (6) is 
thus reformulated to be a linear FE in the 
feature space, H, which enables the 
established linear FE solution (3) readily 
applicable. 

Now, we define kernel within-matrix, Gw, 
for a set of samples, & i = I ... N, as: 

and define kernel between-matrix, Gb, for a 
set of patterns & i = 1 ... N, as: 

G w  = @:cx,swD(x)@a(x) (9) 

G~ = o:,x, bO(X)'@(X) (10) 
=[@&, @(L) @ ( X )  ] and 

@(i) @ ( X )  - - [qqxy') e . .  WG; 11. 

It is easy to show that the rank of matrix 
Gw is not bigger than N-L, while the rank of 
matrix Gb is not bigger than L-I, where N is 
number of samples in the straining set, and L 
is number of classes. Therefore, in order to 
make kernel within-matrix, G,, invertible, a 
conditioned kernel within-matrix, cw, is 
introduced as: 

where z > 0 and is called the conditioning 
coeficient, and I is a identity matrix. 

The KFE algorithm can thus be obtained 

(3), as well as some algebra manipulation. 
The algorithm can be finally described as: 
The matrix A in (7) that maximizes criterion 
Jl in (1) can be formed by m eigenvectors 
corresponding to the m largest eigenvalues of 
matrix G1;'Gb. That is: 

(12) 
where (EilGb)ai = Aiai, i = I...m, and A12 

- 
Gw=G,+zl: (1 1) 

by applying (51, (7)Y (8)Y (91, (101, and (1 1) to 

A=[a, a, a,,,] 

a22 ... -,a,,,. 

3. Modified Kernel-based Feature 
Extraction 

Because Rank(Gb) I L-I, the KFE 
algorithm mentioned previously can only 
extract a maximum of L-1 meaningful 
features even if m is larger than L-1. This 
limitation motivates us to modify the KFE 
algorithm to allow it to extract up to N 
features, where N is the number of samples in 
the training set. This is achieved by 
modifying the formulation of the kernel 
between-matrix Gb to increase its rank. In 
order to simplify our following derivation, 
we assume the underlying problem is a two- 
class problem, while the fundamental idea 
can be readily expended to multi-class 
problems. 

Fortunately, a result fiom statistical 
discriminant analysis, nonparametric 
between-matrix, snb, provides us with an 
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alternative to the between-matrix s b  [7]. The 
estimate of &b can therefore be expressed as: 

1 

(13) 
where 

l k  
k i=1 

Mr)(X) = -zXfiN , where X i i  is the 

i' nearest neighbor (NN) in class i to the 
sample X, which is in the class different &om 
class i. 

1 , where 
P X , k  

W X , k  = 

wx,k is a coefficient that more heavily 
weights the patterns falling in the boundary 
area between two classes. From (13), we 
know that the rank of Snb is determined by the 
internal structure of the samples in the 
training set, and is not limited by the number 
of classes involved. 

We therefore define the kernel 
nonparametric between-matrix Gnb, for 
samples X;., i = I ,  .. N, is definied as: 

where =[Og)cx, ... O&)] and 

By substituting (5) and (13) into (14), we 

Gnb = @:cx,Snb,UJ(X)@UJ(X) (14) 

Og;x) = [@(xy) ' * *  @(X$!)]. 

obtain: 

P =  

. 

1 
-[K(., x;:;) * K(., x$$)]1 kx1 . 
k 

Note that 1kxl is a column vector, whose 
elements are all one, -(i) denotes the class 
different from class i, and K(.,X/')) is 
defined in (7). 

Therefore, the MKFE can be obtained 
simply by replacing the Gb in the KFE 
algorithm with Gnb, as defined in (15). The 
MKFE can be thus described as: 
The matrix A in (7) that maximizes criterion 
JI in (1) can be formed by m eigenvectors 
corresponding to the m largest eigenvalues of 
matrix G:Gnb. That is: 

where (G,'Gnb)ai =Aiai, i = I...m, and A, 
2&2 ... 2 A m  

It is interesting to note that when we 
obtain the matrix A according to (16)) we 
automatically acquire a list of corresponding 

A=[al a, .-. a,] (16) 
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eigenvalues Ai, i = I ... rn, which are real and 
non-negative. The values of these 
eigenvalues can serve as quantitative 
indications of the relative importance of the 
extracted features. 

4. Experiment 

In order to test the efficacy of our MKFE 
algorithm, we applied it to a set of two-class 
target signatures obtained using High Range 
Resolution (HRR) radar. The kernel finction 
employed in the MKFE algorithm is an RT3F 
kernel function with y = 1, and the number of 
NNs, or k in (15), is set to 3. RBF-based 
SVM classifiers [9] are employed to classify 
the new samples constructed by the MKFE 
algorithms from the original HRR signatures. 
We took a certain percentage of I B R  
signatures fEom the whole data set to use as 
the training set, and used part of the 
remaining samples as the testing set. We 
repeated the experiment 100 times over 100 
different random realizations of the training 
set and testing test to reduce the statistical 
variance, and the mean classification rates are 
plotted out in Figure 1. 

As we mentioned previously, because this 
is a two-class problem, both KFD and KFE 
algorithms can only extract a single feature 
for each new samples. In contrast, the 
number of extracted features in each new 
samples contracted by MKFE is only limited 
by the number of original HRR signatures in 
the training set. In our experiment, we set 
MKFE to extract from 1 to 25 features for 
each new sample. We know that, when 
MKFE only extracts 1-feature, it is 
equivalent to the KFE algorithm. Thus, we 
can consider the results in Figure 1 when 
m=l as the performance of the original KFE 
algorithm on this two-class problem. In this 
way, Figure 1 clearly demonstrates that the 
MKFE enhances the performance of KFE by 
increasing the number of extracted features 
for each new sample. 

From Figure 1, we can also observe that 
the MKFE outperforms KFE by about 2% 
when 20% of the whole HRR signature set is 
used as the training set, while it outperforms 
KFE by 4% when only 15% of the whole 
HRR signature set is used as the training set. 
When m=25, we can see that the W E  
algorithm makes the classification rate 
obtained when only 15% signatures are used 
as training set pretty close to the 
classification rate obtained when 20% 
signatures are used as training set. This 
observation suggests that our proposed 
MKFE algorithm is especially useful when 
the training information is limited, or the size 
of training set is small. 

E 

Figure 1. Classification rates vs. Number of 
Extracted Features, m 

5. Conclusions 

In this paper we have proposed a 
modified version of earlier KFE algorithms, 
This algorithm is based on a special form of 
scatter-matrix, whose rank is not determined 
by the number of classes involved, and thus 
breaks the inherent limit in those KFE 
algorithms. Experiment results suggest that 
our proposed MKFE algorithm is especially 
usehl when the training set is small. 
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In order to make this algorithm more 
practical, there are several open lines of 
research, including 1) how to refine this This work was first supported by the 
algorithm to make it less computationally Mission Research Cooperation under 
demanding, and 2) how to theoretically guide subcontract SC-1406-98-000 1. Additional 
users in selecting a set of optimal algorithm support has been provided by a NASA 
parameters for a particular problem. project NRA-00-01-AISR-088. 
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